Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electron-pinned defect-dipoles for high-performance colossal permittivity materials.

Identifieur interne : 000737 ( Main/Exploration ); précédent : 000736; suivant : 000738

Electron-pinned defect-dipoles for high-performance colossal permittivity materials.

Auteurs : RBID : pubmed:23812129

English descriptors

Abstract

The immense potential of colossal permittivity (CP) materials for use in modern microelectronics as well as for high-energy-density storage applications has propelled much recent research and development. Despite the discovery of several new classes of CP materials, the development of such materials with the required high performance is still a highly challenging task. Here, we propose a new electron-pinned, defect-dipole route to ideal CP behaviour, where hopping electrons are localized by designated lattice defect states to generate giant defect-dipoles and result in high-performance CP materials. We present a concrete example, (Nb+In) co-doped TiO₂ rutile, that exhibits a largely temperature- and frequency-independent colossal permittivity (> 10(4)) as well as a low dielectric loss (mostly < 0.05) over a very broad temperature range from 80 to 450 K. A systematic defect analysis coupled with density functional theory modelling suggests that 'triangular' In₂(3+)Vo(••)Ti(3+) and 'diamond' shaped Nb₂(5+)Ti(3+)A(Ti) (A = Ti(3+)/In(3+)/Ti(4+)) defect complexes are strongly correlated, giving rise to large defect-dipole clusters containing highly localized electrons that are together responsible for the excellent CP properties observed in co-doped TiO₂. This combined experimental and theoretical work opens up a promising feasible route to the systematic development of new high-performance CP materials via defect engineering.

DOI: 10.1038/nmat3691
PubMed: 23812129

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Electron-pinned defect-dipoles for high-performance colossal permittivity materials.</title>
<author>
<name sortKey="Hu, Wanbiao" uniqKey="Hu W">Wanbiao Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research School of Chemistry, The Australian National University, Australian Capital Territory 0200, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Research School of Chemistry, The Australian National University, Australian Capital Territory 0200</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yun" uniqKey="Liu Y">Yun Liu</name>
</author>
<author>
<name sortKey="Withers, Ray L" uniqKey="Withers R">Ray L Withers</name>
</author>
<author>
<name sortKey="Frankcombe, Terry J" uniqKey="Frankcombe T">Terry J Frankcombe</name>
</author>
<author>
<name sortKey="Noren, Lasse" uniqKey="Noren L">Lasse Norén</name>
</author>
<author>
<name sortKey="Snashall, Amanda" uniqKey="Snashall A">Amanda Snashall</name>
</author>
<author>
<name sortKey="Kitchin, Melanie" uniqKey="Kitchin M">Melanie Kitchin</name>
</author>
<author>
<name sortKey="Smith, Paul" uniqKey="Smith P">Paul Smith</name>
</author>
<author>
<name sortKey="Gong, Bill" uniqKey="Gong B">Bill Gong</name>
</author>
<author>
<name sortKey="Chen, Hua" uniqKey="Chen H">Hua Chen</name>
</author>
<author>
<name sortKey="Schiemer, Jason" uniqKey="Schiemer J">Jason Schiemer</name>
</author>
<author>
<name sortKey="Brink, Frank" uniqKey="Brink F">Frank Brink</name>
</author>
<author>
<name sortKey="Wong Leung, Jennifer" uniqKey="Wong Leung J">Jennifer Wong-Leung</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2013">2013</date>
<idno type="doi">10.1038/nmat3691</idno>
<idno type="RBID">pubmed:23812129</idno>
<idno type="pmid">23812129</idno>
<idno type="wicri:Area/Main/Corpus">000548</idno>
<idno type="wicri:Area/Main/Curation">000548</idno>
<idno type="wicri:Area/Main/Exploration">000737</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electric Conductivity</term>
<term>Indium (chemistry)</term>
<term>Materials Testing</term>
<term>Models, Theoretical</term>
<term>Temperature</term>
<term>Titanium</term>
<term>X-Ray Diffraction</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Indium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electric Conductivity</term>
<term>Materials Testing</term>
<term>Models, Theoretical</term>
<term>Temperature</term>
<term>Titanium</term>
<term>X-Ray Diffraction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The immense potential of colossal permittivity (CP) materials for use in modern microelectronics as well as for high-energy-density storage applications has propelled much recent research and development. Despite the discovery of several new classes of CP materials, the development of such materials with the required high performance is still a highly challenging task. Here, we propose a new electron-pinned, defect-dipole route to ideal CP behaviour, where hopping electrons are localized by designated lattice defect states to generate giant defect-dipoles and result in high-performance CP materials. We present a concrete example, (Nb+In) co-doped TiO₂ rutile, that exhibits a largely temperature- and frequency-independent colossal permittivity (> 10(4)) as well as a low dielectric loss (mostly < 0.05) over a very broad temperature range from 80 to 450 K. A systematic defect analysis coupled with density functional theory modelling suggests that 'triangular' In₂(3+)Vo(••)Ti(3+) and 'diamond' shaped Nb₂(5+)Ti(3+)A(Ti) (A = Ti(3+)/In(3+)/Ti(4+)) defect complexes are strongly correlated, giving rise to large defect-dipole clusters containing highly localized electrons that are together responsible for the excellent CP properties observed in co-doped TiO₂. This combined experimental and theoretical work opens up a promising feasible route to the systematic development of new high-performance CP materials via defect engineering.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23812129</PMID>
<DateCreated>
<Year>2013</Year>
<Month>08</Month>
<Day>22</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>12</Month>
<Day>27</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1476-1122</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2013</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Nature materials</Title>
<ISOAbbreviation>Nat Mater</ISOAbbreviation>
</Journal>
<ArticleTitle>Electron-pinned defect-dipoles for high-performance colossal permittivity materials.</ArticleTitle>
<Pagination>
<MedlinePgn>821-6</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/nmat3691</ELocationID>
<Abstract>
<AbstractText>The immense potential of colossal permittivity (CP) materials for use in modern microelectronics as well as for high-energy-density storage applications has propelled much recent research and development. Despite the discovery of several new classes of CP materials, the development of such materials with the required high performance is still a highly challenging task. Here, we propose a new electron-pinned, defect-dipole route to ideal CP behaviour, where hopping electrons are localized by designated lattice defect states to generate giant defect-dipoles and result in high-performance CP materials. We present a concrete example, (Nb+In) co-doped TiO₂ rutile, that exhibits a largely temperature- and frequency-independent colossal permittivity (> 10(4)) as well as a low dielectric loss (mostly < 0.05) over a very broad temperature range from 80 to 450 K. A systematic defect analysis coupled with density functional theory modelling suggests that 'triangular' In₂(3+)Vo(••)Ti(3+) and 'diamond' shaped Nb₂(5+)Ti(3+)A(Ti) (A = Ti(3+)/In(3+)/Ti(4+)) defect complexes are strongly correlated, giving rise to large defect-dipole clusters containing highly localized electrons that are together responsible for the excellent CP properties observed in co-doped TiO₂. This combined experimental and theoretical work opens up a promising feasible route to the systematic development of new high-performance CP materials via defect engineering.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Wanbiao</ForeName>
<Initials>W</Initials>
<Affiliation>Research School of Chemistry, The Australian National University, Australian Capital Territory 0200, Australia.</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Yun</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Withers</LastName>
<ForeName>Ray L</ForeName>
<Initials>RL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Frankcombe</LastName>
<ForeName>Terry J</ForeName>
<Initials>TJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Norén</LastName>
<ForeName>Lasse</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Snashall</LastName>
<ForeName>Amanda</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kitchin</LastName>
<ForeName>Melanie</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Paul</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gong</LastName>
<ForeName>Bill</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Hua</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schiemer</LastName>
<ForeName>Jason</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brink</LastName>
<ForeName>Frank</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wong-Leung</LastName>
<ForeName>Jennifer</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>06</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nat Mater</MedlineTA>
<NlmUniqueID>101155473</NlmUniqueID>
<ISSNLinking>1476-1122</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>045A6V3VFX</RegistryNumber>
<NameOfSubstance>Indium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>15FIX9V2JP</RegistryNumber>
<NameOfSubstance>titanium dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>D1JT611TNE</RegistryNumber>
<NameOfSubstance>Titanium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Nat Mater. 2013 Sep;12(9):782-3</RefSource>
<PMID Version="1">23966049</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Electric Conductivity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Indium</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Materials Testing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y">Titanium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">X-Ray Diffraction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>11</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>5</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2013</Year>
<Month>6</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>12</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">nmat3691</ArticleId>
<ArticleId IdType="doi">10.1038/nmat3691</ArticleId>
<ArticleId IdType="pubmed">23812129</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000737 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000737 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23812129
   |texte=   Electron-pinned defect-dipoles for high-performance colossal permittivity materials.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23812129" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024